This image shows Sergey Abramov

Sergey Abramov

Dr.

Group Leader - Water
Institute for Sanitary Engineering, Water Quality and Solid Waste Management
­Department Environmental Microbiology

Contact

Bandtäle 2
70569 Stuttgart
Germany
Room: 1.031

Add a new title here:
  1. 2024

    1. 21.
      Haluska, A. A., Röhler, K., Fabregat‐Palau, J., Alexandrino, D. A. M., Abramov, S., Thompson, K. J., Straub, D., Kleindienst, S., Bugsel, B., Zweigle, J., Zwiener, C., & Grathwohl, P. (2024). Complementary Field and Laboratory Batch Studies to Quantify Generation Rates of Perfluoroalkyl Acids in a Contaminated Agricultural Topsoil with Unknown Precursors. Groundwater Monitoring & Remediation. https://doi.org/10.1111/gwmr.12680
  2. 2023

    1. 20.
      Strobel, C., Abramov, S., Huisman, J. A., Cirpka, O. A., & Mellage, A. (2023). Spectral Induced Polarization (SIP) of Denitrification-Driven Microbial Activity in Column Experiments Packed With Calcareous Aquifer Sediments. Journal of Geophysical Research: Biogeosciences, 128(1), Article 1. https://doi.org/10.1029/2022jg007190
  3. 2022

    1. 19.
      Shulga, N., Abramov, S., Klyukina, A., Ryazantsev, K., & Gavrilov, S. (2022). Fast-growing Arctic Fe–Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-23449-6
    2. 18.
      Abramov, S. M., He, J., Wimmer, D., Muehe, E. M., Helle, T., Thorwarth, H., & Kappler, A. (2022). Thiourea leaching of gold from processed municipal solid waste incineration residues. Journal of Material Cycles and Waste Management, 24(6), Article 6. https://doi.org/10.1007/s10163-022-01476-9
    3. 17.
      Shulga, N., Abramov, S., Klyukina, A., Ryazantsev, K., & Gavrilov, S. (2022). Arctic Fe-Mn deposits from the Kara Sea: fast-growing refuges for cosmopolitan marine microorganisms under sharp changes of redox conditions. https://doi.org/10.21203/rs.3.rs-1816563/v1
    4. 16.
      Abramov, S. M., Straub, D., Tejada, J., Grimm, L., Schädler, F., Bulaev, A., Thorwarth, H., Amils, R., Kappler, A., & Kleindienst, S. (2022). Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Applied and Environmental Microbiology, 88(4), Article 4. https://doi.org/10.1128/aem.02290-21
    5. 15.
      Abramov, S. M., Straub, D., Tejada, J., Grimm, L., Schädler, F., Bulaev, Thorwarth, H., Amils, R., Kappler, A., & Kleindienst, S. (2022). Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Applied and Environmental Microbiology, 88(4), Article 4. https://doi.org/10.1128/aem.02290-21
    6. 14.
      Shulga, N., Abramov, S., Klyukina, A., Ryazantsev, K., & Gavrilov, S. (2022). Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for  cosmopolitan marine microorganisms. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-23449-6
  4. 2021

    1. 13.
      Shulga, N., Abramov, S., Gavrilov, S., & Ryazantsev, K. (2021). Composition of the Fe-Mn nodules and associated microbial communities of the Kara Sea, Arctic Ocean. https://doi.org/10.5194/egusphere-egu21-15925
  5. 2020

    1. 12.
      Abramov, S. M., Tejada, J., Grimm, L., Schädler, F., Bulaev, A., Tomaszewski, E. J., Byrne, J. M., Straub, D., Thorwarth, H., Amils, R., Kleindienst, S., & Kappler, A. (2020). Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. The Science of the Total Environment, 718, 137294. https://doi.org/10.1016/j.scitotenv.2020.137294
  6. 2019

    1. 11.
      Klementiev, K. E., Maksimov, E. G., Gvozdev, D. A., Tsoraev, G. V., Protopopov, F. F., Elanskaya, I. V., Abramov, S. M., Dyakov, M. Yu., Ilyin, V. K., Nikolaeva, N. A., Moisenovich, M. M., Moisenovich, A. M., Slonimskiy, Y. B., Sluchanko, N. N., Lebedev, V. M., Spassky, A. V., Friedrich, T., Maksimov, G. V., Paschenko, V. Z., & Rubin, A. B. (2019). Radioprotective role of cyanobacterial phycobilisomes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1860(2), Article 2. https://doi.org/10.1016/j.bbabio.2018.11.018
  7. 2018

    1. 10.
      Abramov, S., He, J., Wimmer, D., Lemloh, M.-L., Muehe, E. M., Gann, B., Roehm, E., Kirchhof, R., Babechuk, M. G., Schoenberg, R., Thorwarth, H., Helle, T., & Kappler, A. (2018). Heavy metal mobility and valuable contents of processed municipal solid waste incineration residues from Southwestern Germany. Waste Management, 79, 735–743. https://doi.org/10.1016/j.wasman.2018.08.010
  8. 2017

    1. 9.
      Abramov, S., Shalygin, M., Teplyakov, V., & Netrusov, A. (2017). Biofuels starting materials for hydrogen production. In Hydrogen Production, Separation and Purification for Energy (pp. 185--229). Institution of Engineering and Technology. https://doi.org/10.1049/pbpo089e_ch7
  9. 2015

    1. 8.
      Abramov, S. (2015, April 20). A technique for the geochemical signal enhancement by stochastic simulation. 27th International Applied Geochemistry Simposium. https://www.appliedgeochemists.org/aag-events/27th-international-applied-geochemistry-symposium
    2. 7.
      Shalygin, M. G., Abramov, S. M., Netrusov, A. I., & Teplyakov, V. V. (2015). Membrane recovery of hydrogen from gaseous mixtures of biogenic and technogenic origin. International Journal of Hydrogen Energy, 40(8), Article 8. https://doi.org/10.1016/j.ijhydene.2014.12.078
    3. 6.
      Koshkarova, L. A., Voronin, O. G., Abramov, S. M., Netrusov, A. I., & Shestakov, A. I. (2015). THE EFFECT OF METHANE AND CARBON DIOXIDE ON HYDROGENASE-BASED ENZYMATIC ELECTRODE FUNCTIONING. Biotekhnologiya, 6, Article 6. https://doi.org/10.21519/0234-2758-2015-6-86-90
  10. 2013

    1. 5.
      Abramov, S. M., Sadraddinova, E. R., Shestakov, A. I., Voronin, O. G., Karyakin, A. A., Zorin, N. A., & Netrusov, A. I. (2013). Turning Cellulose Waste Into Electricity: Hydrogen Conversion by a Hydrogenase Electrode. PLOS ONE, 8(11), Article 11. https://doi.org/10.1371/journal.pone.0083004
    2. 4.
      Vinogradova, E. N., Abramov, S. M., Sadraddinova, E. R., Fedorenko, V. N., & Shestakov, A. I. (2013, October). Microbial Utilization Of The Oil Wastes In The Conditions Of Arctic Temperature. All Days. https://doi.org/10.2118/166866-ms
  11. 2012

    1. 3.
      Voronin, O. G., Shestakov, A. I., Sadraddinova, E. R., Abramov, S. M., Netrusov, A. I., Zorin, N. A., & Karyakin, A. A. (2012). Bioconversion of the cellulose containing waste into electricity through the intermediate hydrogen production. International Journal of Hydrogen Energy, 37(14), Article 14. https://doi.org/10.1016/j.ijhydene.2012.04.044
  12. 2011

    1. 2.
      Netrusov, A. I., Karyakin, A. A., Teplyakov, V. V., Shalygin, M. G., Voronin, O. G., Abramov, S. M., Sadraddinova, E. R., Mitrofanova, T. I., Glazunova, E. V., & Shestakov, A. I. (2011). Foundations of a technology for the microbiological conversion of organic cellulose-containing wastes into electrical energy through the intermediate formation of biohydrogen. Catalysis in Industry, 3(1), Article 1. https://doi.org/10.1134/s2070050411010089
  13. 2010

    1. 1.
      Netrusov, A., Abramov, S., Sadraddinova, E., Shestakov, A., Shalygin, M., & Teplyakov, V. (2010). Membrane-assisted separation of microbial gaseous fuels from renewable sources. Desalination and Water Treatment, 14(1–3), Article 1–3. https://doi.org/10.5004/dwt.2010.1104
To the top of the page