This image shows Sara Kleindienst

Sara Kleindienst

Prof. Dr.

Head of Department
Institute for Sanitary Engineering, Water Quality and Solid Waste Management
­Department Environmental Microbiology

Contact

Bandtäle 2
70569 Stuttgart-Büsnau
Room: 1.030

Add a new title here:
  1. 2024

    1. 65.
      Haluska, A. A., Röhler, K., Fabregat‐Palau, J., Alexandrino, D. A. M., Abramov, S., Thompson, K. J., Straub, D., Kleindienst, S., Bugsel, B., Zweigle, J., Zwiener, C., & Grathwohl, P. (2024). Complementary Field and Laboratory Batch Studies to Quantify Generation Rates of Perfluoroalkyl Acids in a Contaminated Agricultural Topsoil with Unknown Precursors. Groundwater Monitoring & Remediation. https://doi.org/10.1111/gwmr.12680
    2. 64.
      Peña-Montenegro, T. D., Kleindienst, S., Allen, A. E., Eren, A. M., McCrow, J. P., Arnold, J., & Joye, S. B. (2024). Metatranscriptomic response of deep ocean microbial populations to infusions of oil and/or synthetic chemical dispersant. Appl Environ Microbiol, 90, e01083-24. https://doi.org/10.1128/aem.01083-24
    3. 63.
      Langarica-Fuentes, A., Straub, D., Wimmer, B., Thompson, K., Nahnsen, S., Huhn, C., & Kleindienst, S. (2024). Subtle microbial community changes despite rapid glyphosate degradation in microcosms with four German agricultural soils. Applied Soil Ecology, 198, 105381. https://doi.org/10.1016/j.apsoil.2024.105381
    4. 62.
      Vogel, A. L., Thompson, K. J., Straub, D., Musat, F., Gutierrez, T., & Kleindienst, S. (2024). Genetic redundancy in the naphthalene-degradation pathway of Cycloclasticus pugetii strain PS-1 enables response to varying substrate concentrations. FEMS Microbiology Ecology, 100(6), Article 6. https://doi.org/10.1093/femsec/fiae060
    5. 61.
      Fang, X., Colina Blanco, A. E., Christl, I., Le Bars, M., Straub, D., Kleindienst, S., Planer-Friedrich, B., Zhao, F.-J., Kappler, A., & Kretzschmar, R. (2024). Simultaneously decreasing arsenic and cadmium in rice by soil sulfate and limestone amendment under intermittent flooding. Https://Doi.Org/10.1016/j.Envpol.2024.123786, 347, 123786. https://doi.org/10.1016/j.envpol.2024.123786
  2. 2023

    1. 60.
      Peña-Montenegro, T. D., Kleindienst, S., Allen, A. E., Eren, A. M., Mccrow, J. P., Sánchez-Calderón, J. D., Arnold, J., & Joye, S. B. (2023). Species-specific responses of marine bacteria to environmental perturbation. ISME Communications, 3(1), Article 1. https://doi.org/10.1038/s43705-023-00310-z
    2. 59.
      Vogel, A. L., Thompson, K. J., Kleindienst, S., & Zarfl, C. (2023). Dosage concentration and pulsing frequency affect the degradation efficiency in simulated bacterial polycyclic aromatic hydrocarbon-degrading cultures. Environmental Science and Pollution Research, 30, 59813–59825. https://doi.org/10.1007/s11356-023-26546-9
    3. 58.
      Lu, L., Rughöft, S., Straub, D., Joye, S. B. B., Kappler, A., & Kleindienst, S. (2023). Rhamnolipid Biosurfactants Enhance Microbial Oil Biodegradation in Surface Seawater from the North Sea. ACS ES & T Water, 3(8), Article 8. https://doi.org/10.1021/acsestwater.3c00048
    4. 57.
      Vogel, A. L., Thompson, K. J., App, C. B., Gutierrez, T., Löffler, F. E., & Kleindienst, S. (2023). Substrate-independent expression of key functional genes in Cycloclasticus pugetii strain PS-1 limits their use as markers for PAH biodegradation. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1185619
    5. 56.
      Wimmer, B., Langarica-Fuentes, A., Schwarz, E., Kleindienst, S., Huhn, C., & Pagel, H. (2023). Mechanistic modeling indicates rapid glyphosate dissipation and sorption-driven persistence of its metabolite AMPA in soil. Journal of Environmental Quality, 52(2), Article 2. https://doi.org/10.1002/jeq2.20437
  3. 2022

    1. 55.
      Abramov, S. M., Straub, D., Tejada, J., Grimm, L., Schädler, F., Bulaev, Thorwarth, H., Amils, R., Kappler, A., & Kleindienst, S. (2022). Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Applied and Environmental Microbiology, 88(4), Article 4. https://doi.org/10.1128/aem.02290-21
    2. 54.
      Le, A. V., Straub, D., Planer-Friedrich, B., Hug, S. J., Kleindienst, S., & Kappler, A. (2022). Microbial communities contribute to the elimination of As, Fe, Mn, and NH4+ from groundwater in household sand filters. The Science of the Total Environment, 838(4), Article 4. https://doi.org/10.1016/j.scitotenv.2022.156496
    3. 53.
      Patzner, M. S., Kainz, N., Lundin, E., Barczok, M., Smith, C., Herndon, E., Kinsman-Costello, L., Fischer, S., Straub, D., Kleindienst, S., Kappler, A., & Bryce, C. (2022). Seasonal Fluctuations in Iron Cycling in Thawing Permafrost Peatlands. Environmental Science & Technology, 56(7), Article 7. https://doi.org/10.1021/acs.est.1c06937
    4. 52.
      Patzner, M. S., Logan, M., McKenna, A. M., Young, R. B., Zhou, Z., Joss, H., Mueller, C. W., Hoeschen, C., Scholten, T., Straub, D., Kleindienst, S., Borch, T., Kappler, A., & Bryce, C. (2022). Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 3, 76. https://doi.org/10.1038/s43247-022-00407-8
    5. 51.
      Huang, Y.-M., Jakus, N., Straub, D., Konstantinidis, K. T., Blackwell, N., Kappler, A., & Kleindienst, S. (2022). ‘Candidatus ferrigenium straubiae’ sp. nov., ‘Candidatus ferrigenium bremense’ sp. nov., ‘Candidatus ferrigenium altingense’ sp. nov., are autotrophic Fe(II)-oxidizing bacteria of the family Gallionellaceae. Systematic and Applied Microbiology, 45(3), Article 3. https://doi.org/10.1016/j.syapm.2022.126306
  4. 2021

    1. 50.
      Pfeiffer, S., Kappler, A., Haderlein, S. B., Schmidt, C., Byrne, J. M., Kleindienst, S., Vogt, C., Richnow, H. H., Obst, M., Angenent, L. T., Bryce, C., McCammon, C., & Planer-Freidrich, B. (2021). A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience, 14, 264–272. https://doi.org/10.1038/s41561-021-00742-z
    2. 49.
      Yang, Z., Sun, T., Kleindienst, S., Straub, D., Kretzschmar, R., Angenent, L. T., & Kappler, A. (2021). A coupled function of biochar as geobattery and geoconductor leads to stimulation of microbial Fe(III) reduction and methanogenesis in a paddy soil enrichment culture. Soil Biology and Biochemistry, 163(December), Article December. https://doi.org/10.1016/j.soilbio.2021.108446
    3. 48.
      Huang, Y.-M., Straub, D., Kappler, A., Smith, N., Blackwell, N., & Kleindienst, S. (2021). A Novel Enrichment Culture Highlights Core Features of Microbial Networks Contributing to Autotrophic Fe(II) Oxidation Coupled to Nitrate Reduction. Microbial Physiology, 31(3), Article 3. https://doi.org/10.1159/000517083
    4. 47.
      Glodowska, M., Schneider, M., Eiche, E., Kontny, A., Neumann, T., Straub, D., Berg, M., Prommer, H., Bostick, B. C., Nghiem, A. A., Kleindienst, S., & Kappler, A. (2021). Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam. The Science of the Total Environment, 779, 146501. https://doi.org/10.1016/j.scitotenv.2021.146501
    5. 46.
      Jakus, N., Blackwell, N., Straub, D., Kappler, A., & Kleindienst, S. (2021). Presence of Fe(II) and nitrate shapes aquifer-originating communities leading to an autotrophic enrichment dominated by an Fe(II)-oxidizing Gallionellaceae sp. FEMS Microbiology Ecology, 97(11), Article 11. https://doi.org/10.1093/femsec/fiab145
    6. 45.
      Pienkowska, A., Glodowska, M., Mansor, M., Buchner, D., Straub, D., Kleindienst, S., & Kappler, A. (2021). Isotopic Labeling Reveals Microbial Methane Oxidation Coupled to Fe(III) Mineral Reduction in Sediments from an As-Contaminated Aquifer. Environmental Science & Technology Letters, 8(9), Article 9. https://doi.org/10.1021/acs.estlett.1c00553
    7. 44.
      Glodowska, M., Stopelli, E., Straub, D., Thi, D. V., Trang, Op. T. K., Viet, P. H., AdvectAs team members, Berg, M., Kappler, A., & Kleindienst, S. (2021). Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 407, 124398. https://doi.org/10.1016/j.jhazmat.2020.124398
    8. 43.
      Nikolova, C. N., Ijaz, U. Z., Magill, C., Kleindienst, S., Joye, S. B., & Gutierrez, T. (2021). Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants. Microbiome, 9, 191. https://doi.org/10.1186/s40168-021-01143-5
    9. 42.
      Huang, Y.-M., Straub, D., Blackwell, N., Kappler, A., & Kleindienst, S. (2021). Meta-omics Reveal Gallionellaceae and Rhodanobacter Species as Interdependent Key Players for Fe(II) Oxidation and Nitrate Reduction in the Autotrophic Enrichment Culture KS. Applied and Environmental Microbiology, 87(15), Article 15. https://doi.org/10.1128/AEM.00496-21
    10. 41.
      Jakus, N., Blackwell, N., Osenbrück, K., Straub, D., Byrne, J. M., Wang, Z., Glöckler, D., Elsner, M., Lueders, T., Grathwohl, P., Kleindienst, S., & Kappler, A. (2021). Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer. Applied and Environmental Microbiology, 87(16), Article 16. https://doi.org/10.1128/AEM.00460-21
    11. 40.
      Glodowska, M., Schneider, M., Eiche, E., Kontny, A., Neumann, T., Straub, D., AdvectAs project members, Kleindienst, S., & Kappler, A. (2021). Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer. Environmental Pollution, 281, 117012. https://doi.org/10.1016/j.envpol.2021.117012
  5. 2020

    1. 39.
      Rughöft, S., Jehmlich, N., Gutierrez, T., & Kleindienst, S. (2020). Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms, 9(1), Article 1. https://doi.org/10.3390/microorganisms9010003
    2. 38.
      Gutierrez, T., & Kleindienst, S. (2020). Uncovering Microbial Hydrocarbon Degradation Processes: The Promise of Stable Isotope Probing. In A. Teske & V. Carvalho (Eds.), Marine Hydrocarbon Seeps : Microbiology and Biogeochemistry of a Global Marine Habitat (pp. 183–199). Springer. https://doi.org/10.1007/978-3-030-34827-4_10
    3. 37.
      Glodowska, M., Stopelli, E., Schneider, M., Rathi, B., Strauber, D., Lightfoot, A., Kipfer, R., Berg, M., Jetten, M., Kleindienst, S., Kappler, A., & AdvectAs Team Members. (2020). Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 1, 42. https://doi.org/10.1038/s43247-020-00037-y
    4. 36.
      Glodowska, M., Stopelli, E., Schneider, M., Lightfoot, A., Rathi, B., Straub, D., Patzner, M., Duyen, V. T., AdvectAs Team Members, Berg, M., Kleindienst, S., & Kappler, A. (2020). Role of in Situ Natural Organic Matter in Mobilizing As during Microbial Reduction of FeIII-Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam). Environmental Science & Technology, 54(7), Article 7. https://doi.org/10.1021/acs.est.9b07183
    5. 35.
      Abramov, S. M., Tejada, J., Grimm, L., Schädler, F., Bulaev, A., Tomaszewski, E. J., Byrne, J. M., Straub, D., Thorwarth, H., Amils, R., Kleindienst, S., & Kappler, A. (2020). Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. The Science of the Total Environment, 718, 137294. https://doi.org/10.1016/j.scitotenv.2020.137294
    6. 34.
      Kleindienst, S., & et al. (2020). Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. The Science of the Total Environment, 717, 137143. https://doi.org/10.1016/j.scitotenv.2020.137143
    7. 33.
      Blackwell, N., Bryce, C., Straub, D., Kappler, A., & Kleindienst, S. (2020). Genomic Insights into Two Novel Fe(II)-Oxidizing Zetaproteobacteria Isolates Reveal Lifestyle Adaption to Coastal Marine Sediments. Applied and Environmental Microbiology, 86(17), Article 17. https://doi.org/10.1128/AEM.01160-20
    8. 32.
      Kleindienst, S., & Knittel, K. (2020). Anaerobic Hydrocarbon-Degrading Sulfate-Reducing Bacteria at Marine Gas and Oil Seeps. In A. Teske & V. Carvalho (Eds.), Marine Hydrocarbon Seeps : Microbiology and Biogeochemistry of a Global Marine Habitat (pp. 21–41). Springer. https://doi.org/10.1007/978-3-030-34827-4_2
    9. 31.
      Straub, D., Blackwell, N., Langarica-Fuentes, A., Peltzer, A., Nahnsen, S., & Kleindienst, S. (2020). Interpretations of Environmental Microbial Community Studies Are Biased by the Selected 16S rRNA (Gene) Amplicon Sequencing Pipeline. Frontiers in Microbiology, 11(October), Article October. https://doi.org/10.3389/fmicb.2020.550420
    10. 30.
      Rughöft, S., Vogel, A. L., Joye, S. B., Gutierrez, T., & Kleindienst, S. (2020). Starvation-Dependent Inhibition of the Hydrocarbon Degrader Marinobacter sp. TT1 by a Chemical Dispersant. Journal of Marine Science and Engineering, 8(11), Article 11. https://doi.org/10.3390/jmse8110925
  6. 2019

    1. 29.
      Kleindienst, S., Chourey, K., Chen, G., Murdoch, R. W., Higgins, S. A., Iyer, R., Campagna, S. R., Mack, E. E., Seger, E. S., Hettich, R. L., & Löffler, F. E. (2019). Proteogenomics Reveals Novel Reductive Dehalogenases and Methyltransferases Expressed during Anaerobic Dichloromethane Metabolism. Applied and Environmental Microbiology, 85(6), Article 6. https://doi.org/10.1128/AEM.02768-18
    2. 28.
      Ziervogel, K., Joye, S. B., Kleindienst, S., Malkin, S. Y., Passow, U., Steen, A. D., & Arnosti, C. (2019). Polysaccharide hydrolysis in the presence of oil and dispersants: Insights into potential degradation pathways of exopolymeric substances (EPS) from oil-degrading bacteria. Elementa, 7, 31. https://doi.org/10.1525/elementa.371
    3. 27.
      Otte, J. M., Blackwell, N., Ruser, R., Kappler, A., Kleindienst, S., & Schmidt, C. (2019). N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Scientific Reports, 9, 10691. https://doi.org/10.1038/s41598-019-47172-x
    4. 26.
      Bryce, C., Blackwell, N., Straub, D., Kleindienst, S., & Kappler, A. (2019). Draft Genome Sequence of Chlorobium sp. Strain N1, a Marine Fe(II)-Oxidizing Green Sulfur Bacterium. Microbiology Resource Announcements, 8(18), Article 18. https://doi.org/10.1128/MRA.00080-19
  7. 2018

    1. 25.
      Otte, J. M., Blackwell, N., Soos, V., Rughöft, S., Maisch, M., Kappler, A., Kleindienst, S., & Schmidt, C. (2018). Sterilization impacts on marine sediment : are we able to inactivate microorganisms in environmental samples? FEMS Microbiology Ecology, 94(12), Article 12. https://doi.org/10.1093/femsec/fiy189
    2. 24.
      Joye, S., Kleindienst, S., & Peña-Montenegro, D. (2018). SnapShot: Microbial Hydrocarbon Bioremediation. Cell, 172(6), Article 6. https://doi.org/10.1016/j.cell.2018.02.059
    3. 23.
      et al., & Kleindienst, S. (2018). A case study for late Archean and Proterozoic biogeochemical iron- and sulphur cycling in a modern habitat : the Arvadi Spring. Geobiology, 16(4), Article 4. https://doi.org/10.1111/gbi.12293
    4. 22.
      Bryce, C., Franz-Wachtel, M., Nalpas, N. C., Miot, J., Benzerara, K., Byrne, J. M., Kleindienst, S., Macek, B., & Kappler, A. (2018). Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Applied and Environmental Microbiology, 84(16), Article 16. https://doi.org/10.1128/AEM.01166-18
    5. 21.
      Tominski, C., Lösekann-Behrens, T., Ruecker, A., Hagemann, N., Kleindienst, S., Mueller, C. W., Höschen, C., Kögel-Knabner, I., Kappler, A., & Behrens, S. (2018). Insights into Carbon Metabolism Provided by Fluorescence In Situ Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 84(9), Article 9. https://doi.org/10.1128/AEM.02166-17
    6. 20.
      Bryce, C., Blackwell, N., Schmidt, C., Otte, J., Huang, Y.-M., Kleindienst, S., Tomaszewski, E., Schad, M., Warter, V., Peng, C., Byrne, J. M., & Kappler, A. (2018). Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environmental Microbiology, 20(10), Article 10. https://doi.org/10.1111/1462-2920.14328
    7. 19.
      Otte, J. M., Harter, J., Laufer, K., Blackwell, N., Straub, D., Kappler, A., & Kleindienst, S. (2018). The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environmental Microbiology, 20(7), Article 7. https://doi.org/10.1111/1462-2920.14260
  8. 2017

    1. 18.
      Kleindienst, S., Higgins, S. A., Tsementzi, D., Chen, G., Konstantinidis, K. T., Mack, E. E., & Löffler, F. E. (2017). ‘Candidatus Dichloromethanomonas elyunquensis’ gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Systematic and Applied Microbiology, 40(3), Article 3. https://doi.org/10.1016/j.syapm.2016.12.001
    2. 17.
      Joye, S. B., & Kleindienst, S. (2017). 2. Hydrocarbon seep ecosystems. In J. Kallmeyer (Ed.), Life at Vents and Seeps (pp. 33–52). De Gruyter. https://doi.org/10.1515/9783110493672-002
    3. 16.
      Kleindienst, S., & Joye, S. B. (2017). Global Aerobic Degradation of Hydrocarbons in Aquatic Systems. In F. Rojo (Ed.), Aerobic Utilization of Hydrocarbons, Oils, and Lipids (pp. 797–814). Springer. https://doi.org/10.1007/978-3-319-50418-6_46
    4. 15.
      Chen, G., Kleindienst, S., Griffiths, D. R., Mack, E. E., Seger, E. S., & Löffler, F. E. (2017). Mutualistic interaction between dichloromethane- and chloromethane-degrading bacteria in an anaerobic mixed culture. Environmental Microbiology, 19(11), Article 11. https://doi.org/10.1111/1462-2920.13945
    5. 14.
      Nordhoff, M., Tominski, C., Halama, M., Byrne, J. M., Obst, M., Kleindienst, S., Behrens, S., & Kappler, A. (2017). Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS. Applied and Environmental Microbiology, 83(13), Article 13. https://doi.org/10.1128/AEM.00752-17
  9. 2016

    1. 13.
      Kleindienst, S., Higgins, S. A., Tsementzi, D., Konstantinidis, K. T., Mack, E. E., & Löffler, F. E. (2016). Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium. Microbiology Resource Announcements, 3(4), Article 4. https://doi.org/10.1128/genomeA.00037-16
    2. 12.
      Joye, S. B., Kleindienst, S., Gilbert, J. A., Handley, K. M., Weisenhorn, P., Overholt, W. A., & Kostka, J. E. (2016). Responses of Microbial Communities to Hydrocarbon Exposures. Oceanography, 29(3), Article 3. https://doi.org/10.5670/oceanog.2016.78
    3. 11.
      Seidel, M., Kleindienst, S., Dittmar, T., Joye, S. B., & Medeiros, P. M. (2016). Biodegradation of crude oil and dispersants in deep seawater from the Gulf of Mexico: Insights from ultra-high resolution mass spectrometry. Deep-Sea Research. Part 2, Topical Studies in Oceanography, 129, 108–118. https://doi.org/10.1016/j.dsr2.2015.05.012
    4. 10.
      Kleindienst, S., Grim, S., Sogin, M., Bracco, A., Crespo-Medina, M., & Joye, S. B. (2016). Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. The ISME Journal, 10, 400–415. https://doi.org/10.1038/ismej.2015.12
    5. 9.
      Kleindienst, S., & et al. (2016). Reply to Prince et al.: Ability of chemical dispersants to reduce oil spill impacts remains unclear. Proceedings of the National Academy of Sciences of the United States of America, 113(11), Article 11. https://doi.org/10.1073/pnas.1600498113
  10. 2015

    1. 8.
      Kleindienst, S., & et al. (2015). Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 112(48), Article 48. https://doi.org/10.1073/pnas.1507380112
    2. 7.
      Kleindienst, S., Paul, J. H., & Joye, S. B. (2015). Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nature Reviews : Microbiology, 13, 388–396. https://www.nature.com/articles/nrmicro3452
  11. 2014

    1. 6.
      Kleindienst, S., & et al. (2014). Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. The ISME Journal, 8, 2029–2044. https://doi.org/10.1038/ismej.2014.51
  12. 2013

    1. 5.
      et al., & Kleindienst, S. (2013). Predominant archaea in marine sediments degrade detrital proteins. Nature, 496, 215–218. https://doi.org/10.1038/nature12033
    2. 4.
      von Netzer, F., Pilloni, G., Kleindienst, S., Krüger, M., Knittel, K., Gründger, F., & Lueders, T. (2013). Enhanced Gene Detection Assays for Fumarate-Adding Enzymes Allow Uncovering of Anaerobic Hydrocarbon Degraders in Terrestrial and Marine Systems. Applied and Environmental Microbiology, 79(2), Article 2. https://doi.org/10.1128/AEM.02362-12
  13. 2012

    1. 3.
      Graue, J., Kleindienst, S., Lueders, T., Cypionka, H., & Engelen, B. (2012). Identifying fermenting bacteria in anoxic tidal-flat sediments by a combination of microcalorimetry and ribosome-based stable-isotope probing. FEMS Microbiology Ecology, 81(1), Article 1. https://doi.org/10.1111/j.1574-6941.2011.01282.x
    2. 2.
      Kleindienst, S., Ramette, A., Amann, R., & Knittel, K. (2012). Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environmental Microbiology, 14(10), Article 10. https://doi.org/10.1111/j.1462-2920.2012.02832.x
  14. 2010

    1. 1.
      Orcutt, B. N., Joye, S. B., Kleindienst, S., Knittel, K., Ramette, A., Reitz, A., Samarkin, V., Treude, T., & Boetius, A. (2010). Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Research. Part 2, Topical Studies in Oceanography, 57(21–23), Article 21–23. https://doi.org/10.1016/j.dsr2.2010.05.014

 

Since Oct 2023 Director of ISWA at the University of Stuttgart (Germany)
Since Jul 2022 Full Professor for Environmental Microbiology at the University of Stuttgart (Germany)
Dec 2017 – Jul 2022 Junior Professor for Microbial Ecology at the University of Tübingen (Germany)
  Positive interim evaluation (equals “habilitation”) in August 2020
Oct 2017 – Jul 2022 Independent Emmy Noether Research Group Leader at the University of Tübingen (Germany)
Aug 2017 – Jul 2022 Head of the Independent Environmental Omics Group at the University of Tübingen (Germany)
Mar 2015 - Sep 2017 Junior Research Group Leader in the Geomicrobiology Group at the University of Tübingen (Germany)
Sep 2013 - Feb 2015 Postdoctoral Research Associate at the Oak Ridge National Laboratory, Joint Institute for Biological Sciences, Oak Ridge, TN (USA) and the University of Tennessee, Department of Microbiology, Knoxville, TN (USA)
Aug 2012 - Aug 2013 Postdoctoral Research Associate at the University of Georgia, Department of Marine Sciences, Athens, GA (USA)
May 2012 Dr. rer. nat., University of Bremen (Germany)
  Title of dissertation: “Hydrocarbon-degrading sulfate-reducing bacteria at marine gas and oil seeps”
Sep 2008 - May 2012 PhD Student at the Max-Planck Institute for Marine Microbiology (MPI), Bremen (Germany)
Jul - Sep 2008 Research Assistant at the Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg (Germany)
Oct 2002 - Jun 2008 Diploma Studies of Biology, Carl-von-Ossietzky University of Oldenburg (Germany)
  Diploma thesis “Combination of microcalorimetry and rRNA-based stable-isotope probing to identify active microorganisms from tidal-flat sediments” at the Carl-von-Ossietzky University of Oldenburg (Germany)

 

Fellowships and Awards

  • ERC Starting Grant
  • German Research Foundation’s Emmy Noether Program - An Accelerated Path to Professorship
  •  Fellowship of AcademiaNet - The Expert Database of Outstanding Women in Academia
  • Robert Bosch Foundation's Fast Track Program for Outstanding Women in Science
  • Baden-Württemberg Foundation's Elite Program for Postdocs for Leading Early Career Researchers 
  • Research Scholars: Marine Biological Laboratory's Microbial Diversity Course, Woods Hole, USA
To the top of the page